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Abstract. The numerical simulation of incompressible fluid flow often requires a Poisson solver subroutine.
For the majority of these Computational Fluid Dynamics codes, this subroutine is one of the greatest CPU time
consumer. In the present paper 6 different Poisson solver subroutines are presented and compared, namely: point
SOR (Successive Quer-Relazation), line SOR, conjugate gradient method, Full Approzimation Storage (FAS)
multigrid solver with: line SOR, conjugate gradient method and a mized (line SOR — conjugate gradient). All of
the above methods use second order finite difference discretization in space. A Cartesian grid is used for each test
case. The distance between consecutive points is constant in both directions. A performance test of the Poisson
subroutines is carried out using a problem with analytical solution. An evaluation of the Poisson subroutines
i a 2D incompressible flow simulation is done using a driven cavity flow as benchmark. In these cases, the
equations are written in vorticity-stream function formulation. A fourth order Runge-Kutta scheme is used as
time integrator. Different CFL numbers are used with each Poisson solver. The results show that the multigrid
solvers are the most efficient for the tests performed here.
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1. Introduction

Incompressible flow phenomena arise in a number of applications in science and engineering. Almost all
numerical solutions of incompressible fluid flows requires a Poisson solver subroutine. Therefore, the study
of efficient iterative methods and multigrid schemes for solving the Poisson equation are very important in
Computational Fluid Dynamic (CFD).

The numerical solution of the Poisson equation can be obtained by iterative methods or direct methods. In
the present study only iterative methods are evaluated. The term iterative method refers to a wide range of
techniques that use successive approximations to obtain more accurate solutions of linear systems at each time
step. In this work we will study two classes of iterative methods: stationary and non-stationary methods.

Stationary methods, known as Basic iterative methods, that are older but simpler to understand and im-
plement, and usually not very efficient. In this paper, the Basic iterative method considered is the Successive
Over-Relaxation. The Successive Over-Relaxation can be derived from the Gauss-Seidel method by introducing
an relaxation parameter w. For the optimal choice of w, Successive Over-Relaxation may converge faster than
Gauss-Seidel by an order of magnitude. An elementary introduction is given in Wesseling, 2001; Saad, 2003.

Non-stationary methods, known as Krylov subspace methods are relatively recent; their analysis are usually
harder to understand, but they can be highly effective. The Conjugate Gradient method was adopted here
as a type of Krylov subspace method. The conjugate gradient method derives its name from the fact that it
generates a sequence of conjugate (or orthogonal) vectors. These vectors are the residuals of the iterations.
They are also the gradients of a quadratic functional, the minimization of which is equivalent for solving the



linear system. The conjugate gradient converges to the correct solution when the matrix is symmetric positive
definite, and is very efficient, since storage for only a limited number of vectors is required. Various authors
have presented the theory and implementations of conjugate gradient (Golub and Van Loan, 1989; Baker, 1991;
Wesseling, 2001; Saad, 2003).

Convergence acceleration techniques linked with iterative methods have recently been developed and have led
to a dramatic improvement in convergence rates Hirsch, 1988. The multigrid method works as an acceleration
technique and is the most effective and general iterative technique known today. This method has its origin in
the properties of conventional iterative techniques, in particular, their asymptotic slow convergence because of
the poor damping of high frequency errors (short wavelengths). The basic ideas of a multigrid method follows
the lines:

e apply one or more sweeps of an iterative method with good smoothing properties of the higher-frequency
components;

e transfer the problem to a coarse grid;
e transfer the corrections obtained to the fine grid in order to generate a new approximation of the solution.

In the current work an analysis of Poisson solvers subroutines was done. In the first test case the subroutines
were evaluated in a simple test where the analytical solution is known. The performance of the Poisson solvers
subroutines in a numerical simulation of a 2D incompressible flow was also analyzed. In these cases the Navier-
Stokes equation were written in vorticity-stream function formulation. The benchmark test adopted was a
driven cavity flow. Three different mesh sizes were tested, and for each mesh many CFL numbers were imposed.
These tests enable a evaluation of the performance of the Poisson solver subroutines in a 2D flow simulation.

2. Formulation

For the numerical solution, the Navier-Stokes equations were written in vorticity-stream function formula-
tion. The vorticity in the spanwise direction, denoted by w, is:
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The vorticity transport equation can be obtained by applying a rotational of the momentum equation is:

a_w = — a_w — a_w + i 82_w + 82_w (4)
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The continuity equation is:
ou Ov
e + oy 0. (5)

Using the definitions of stream function Egs. (2) and (3) and applying them in the vorticity definition Eq.
(1) a Poisson-type equation for the 1) can be derived:
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Equations (2), (3), (4) and (6) were solved numerically by the schemes described below.
The solution was marched in time according to the following steps:

1. Impose initial conditions for u, v, w and 1 compatible with each other;
2. Calculate the vorticity from the vorticity transport equation (4), for time ¢ + dt;

3. Calculate ¢ from the Poisson equation (6);
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4. Calculate v velocity from Eq. (3);
5. Calculate u velocity from Eq. (2);
6. Calculate the vorticity generation at the wall for the new velocity distribution;

7. return to the second step until the desired integration time is reached.
3. Numerical Method

The time derivatives in the vorticity transport equations were discretized with a classical 4" order Runge-
Kutta integration scheme Ferziger and Peric, 1997. The spatial derivatives were calculated using a 2"¢ order
finite difference schemes. The vorticity updating at the wall, for all boundaries but the upper boundary, was
done using the formula:

T —85¢watr + 108%Ywati+1 — 2T wati+2 + 4Vwali+3 7
wall 18(A)2

The vorticity at the upper boundary was calculated by:

11ujma:c - 18ujmaa:71 + gujma172 - 2ujmaa:73

s = 3 ®

In the present work, six different Poisson solver subroutines were evaluated. The details of each one are
given below.

3.1. Poisson Solvers

The Poisson solvers tested in the current work are classified as iterative methods. The algebraic systems
that arise from the discretization are sparse and can be very large (depending on the number of points in both
directions). Therefore iterative methods are more efficient and demand far less storage than direct methods.
The methods implemented can be classified as:

3.1.1. Basic iterative methods

These methods were very popular in the 60’s. The first iterative methods for solving large linear system
were based on relaxation of the coordinates. Beginning with a given approximate solution, they modify the
components of the approximation, one or a few at a time and in a certain order, until convergence is reached.
One of the main difficulties with these methods is finding an optimal relaxation factor for general matrices.
However when combined with more efficient methods they can be quite successful. Moreover, there are some
application areas where variations of these methods are still quite popular Wesseling, 2001.

3.1.2. Krylov subspace methods

The system to be solved can be written as Ax = b, where A is a large and sparse matrix. These techniques
are based on projection processes, both orthogonal and oblique, onto Krylov subspace, which are subspaces
spanned by vectors of the form p(A)v, where p is a polynomial. In short, these techniques approximate A~'b
by p(A)v, where p is a "good" polynomial Saad, 2003. These methods are widely used because their rate
of convergence can be estimated. The attractiveness of those methods, for large sparse systems, is that they
reference A only through the multiplication by a vector. The gradient (or steepest descent) and the conjugate
gradient methods can be applied to the solution of Az = b only when A is symmetric and positive definite.

3.1.3. Multigrid methods

The convergence of Krylov’s subspace methods for solving systems arising from discretized partial differential
equations tends to slow down considerably as these systems become larger. In contrast the multigrid methods
are, in theory, independent of the mesh size. One significant difference with the Krylov subspace approach
is that multigrid methods were initially designed specifically for the solution of the discretized elliptic Partial
Differential Equations. The multigrid methods were later extended to nonlinear systems, and other type of
equations. The discovery of multigrid methods Brandt, 1977 is the most significant development in numerical
analysis in the last 30 years, and is having a strong impact on Computational Fluid Dynamics (CFD) Wesseling,
2001. A review of the application of multigrid in CFD is showed by Wesseling, 2001. The main advantage of
these methods is their very fast convergence rate, however they may require implementations that are specific
to the physical problem at hand. Three multigrid methods were tested and their main differences are the solver
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used in each grid. A Full Approximation Scheme (FAS) was adopted, and a V cycle with 4 meshes were used
in all the methods described bellow.

There are many multigrid methods that solve elliptic problems (Briggs, 1987; Gupta et al., 1997; Spitaleri,
2000; Zhang, 1996; Zhang, 1997). However, the multigrid idea can also be applied to nonlinear problems. The
adopted algorithm in this work is the FAS applied in a V' cycle with 4 meshes (Stiiben and Trottenberg, 1981).
The Poisson equation, Eq. (6) can be written in the form:

VQf = st, 9)

where V? is the Laplacian operator, f is the unknown solution, and st is the source term. This equation is
solved in each grid, using an iterative procedure.

The multigrid scheme works in the following way, taking h as the distance between two consecutive points
in the finest mesh, 2 iterations is performed in this mesh (h):

V2 fh = sty (10)
The residual is calculated next from (resp):
resp = stp — Vth. (11)
To define the variables in the next grid (coarser), a operation called restriction is used:
fn = fon  (SD), (12)
resi, = resy, (FW), (13)

where ST stands for Straight Injection and F'W stands for Full Weight. More details of the restriction operation
can be found in Press et al., 1997.
Then, the source term for the second mesh is calculated:

stop, = resgh + VQfSh. (14)

Here again 2 iterations are done in this mesh (2h):

V2 for, = stop. (15)
After that, the residual is calculated from(reszp):
resan = Stop — V2 fon, (16)

and this procedure is repeated until the coarsest mesh (8h) is reached, where 40 iterations are performed:

V2 fan = stgn. (a7)
The way back to the finest mesh starts with the calculation of the correction on the coarsest mesh:
COrrgh = féh - fé)h' (18)

This correction is interpolated, using a bi-linear interpolation to the grid 8/ to the next grid 4h:

COTT8H = COTT4. (19)
After that, the function is corrected, using new values:

fan = fip + corrap. (20)
One single iteration is performed in this mesh (4h):

V2 fan = stan, @)

Then the correction in this mesh is also calculated, and this procedure is repeated until the finest mesh is
reached:

V2 fh = sty (22)

The number of V' cycles used to obtain the solution of the Poisson equation depends on the number of points
in the mesh and on the minimum residual allowed on it. Figure 1 illustrates the above multigrid procedure.
Three different iterative schemes were used with the multigrid method and are described below.
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Figure 1: V Cycle.

o Multigrid with LSOR (FAS-LSOR)

This method uses a Line Successive Over-Relaxation (LSOR) as the iterative procedure in each mesh.
Special attention should be given to the relaxation factor used in this procedure, a value between 1 and
2 can be used when the method goes from the fine to the coarse grid but this factor must be 1 when the
method goes from coarse to the fine grid, otherwise the smoothing of the high frequencies, main idea of
this scheme, does not work.

e Multigrid with Conjugate Gradient (FAS-CG)

This method uses the Conjugate Gradient (CG) iterative procedure in each mesh. The main advantage
is that no relaxation factor is needed in this scheme.

e Multigrid with LSOR and CG (FAS-mix)

Several tests were performed changing the iterative procedures in the multigrid scheme. The best CPU
time results were obtained when Line Successive Over-Relaxation (LSOR) was adopted in the 3 first
meshes and a Conjugate Gradient (CG) was used in the coarsest mesh.

4. Results

This section is divided in two, the first one shown the comparison of the Poisson solvers for a simple test
case; and the second part shows the results of a 2 dimensional incompressible flow simulation where the Poisson
solvers were evaluated. The results were obtained using Atlon AMD 64 3200+ computers. The processing time
obtained in each simulation is shown in seconds.

4.1. Poisson equation case
Initially, the efficiency of each solver is tested for the Poisson equation (6) where the minimum and maximum

values of = and y were 0 and 1, respectively. The boundary conditions and the source term for this test case
are given by:

Left boundary = ¥(0,y) = sin(y)
Right boundary = ¥(1,y) = cos(1)sin(y)
Lower boundary = ¥(z,0) =0.0
Upper boundary = Y(x, 1) = cos(x)sin(1)
Source term = w(z,y) = —2cos(zx)sin(y)

Observing the results in Tab. 1, and comparing the PSOR, LSOR and CG methods, one can note that
the CG method is faster than the other PSOR and LSOR methods when we have a large number of points.
Comparing the results obtained by the multigrid methods, the FAS-MIX method is the faster in almost all
cases. The FAS-CG method is the slowest method, when comparing with the other multigrid methods, but is
faster than the PSOR, LSOR and CG methods in the most tested cases. The result obtained with the multigrid
method with CG solver demands a construction of a complex system in each mesh, and this causes an increase
in processing time.
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Table 1: CPU time (seconds) for test case.

Mesh PSOR | LSOR CG FAS-LSOR | FAS-CG | FAS-MIX
65 x 65 | 0.02299 | 0.04999 | 0.04799 0.02599 0.03499 0.02599
65 x 129 | 0.14497 | 0.52791 | 0.17597 0.05598 0.16397 0.05598
65 x 257 | 1.06381 | 4.38333 | 0.85687 0.11700 0.89385 0.11596
65 x 513 | 9.60253 | 38.0681 | 4.19140 0.25 1.23681 0.24218
129 x 65 | 0.14597 | 0.10198 | 0.17497 0.05698 0.15797 0.05499
129 x 129 | 0.48791 | 1.03584 | 0.51791 0.12197 0.20797 0.12098
129 x 257 | 2.68560 | 8.86767 | 2.32775 0.25891 1.01672 0.25195
129 x 513 | 20.2465 | 75.6035 | 9.66210 0.54199 11.7773 0.52441
257 x 65 | 1.06584 | 0.20295 | 0.86486 0.24996 0.86788 0.24295

257 x 129 | 2.61560 | 2.08966 | 2.48657 0.28198 1.25488 0.27795
257 x 257 | 8.88867 | 18.0651 | 6.02392 0.58789 1.24169 0.57812
257 x 513 | 45.0468 | 146.985 | 21.5058 1.22851 18.1875 1.18359
513 x 65 | 8.41259 | 0.40405 | 4.58837 1.97070 1.32690 1.91577
513 x 129 | 18.3930 | 4.27832 | 8.84277 1.14892 7.58691 1.14794
513 x 257 | 43.5468 | 35.9785 | 19.8515 1.99609 8.56445 1.22656
513 x 513 | 139.898 | 291.054 | 43.7070 4.12500 5.38281 2.49609

4.2. Navier-Stokes equation cases

In order to verify the efficiency of the Poisson subroutine solvers in a transient simulation, many CFL
numbers were imposed. The simulations were stopped when:

Wit —wl'; <1x107°, (23)
This criteria was imposed in all point (i, j) of the domain. The CPU times to obtain this criteria are shown
bellow, for each Poisson subroutine solvers. The graphics are plotted in log x log scales, with CFL number in
the x direction and CPU time in the y direction. The CFL numbers are plotted in a reverse axis direction.

Figure 2 shows the results obtained for a mesh of 65 x 65 points. These results using FAS-MIX and FAS-
LSOR subroutines showed the lower CPU times for any CFL number. The FAS-MIX results were slightly
better than the FAS-LSOR results in all tested cases. The use of FAS-CG, PSOR and LSOR subroutines in the
numerical code showed similar results. The CPU times obtained with PSOR subroutine were better than the
FAS-CG and LSOR. The CG subroutine results required the larger CPU times, if compared to the others. These
could be explained by the fact that the solver was not preconditioned. It was verified that the CG subroutine
demands more CPU time to obtain a solution, if compared to the other methods, when this solution is close to
the initial condition.

The CPU time results obtained with a mesh of 129 x 129 points were very similar to the results with a mesh
of 65 x 65 points as can be seen in Fig. 3. The only difference is that, with CFL number lower than 5 x 1072,
the use of FAS-CG subroutine consumed more CPU time than LSOR and PSOR methods.

Table 2 shows the CPU time results for a mesh with 257 x 257 points. It can be seen that the results with
FAS-MIX subroutine were the fastest than the other tested methods. The simulations with CFL = 0.01, using
PSOR, LSOR and CG subroutines, were not performed because of the long time required. In these cases, the
use of FAS-CG method showed best results if compared to PSOR, LSOR and CG results. The CPU time results
using multigrid methods were lower than the other iterative methods. As the number of points increases this
becomes more visible, as expected.

Table 2: CPU time results (seconds) versus CFL number — 257 x 257 points.

CFL Number | FAS-LSOR | FAS-MIX | FAS-CG PSOR LSOR CG
0.1 4244.456 3824.622 | 22057.372 | 83874.687 | 90526.093 | 116068.031
0.05 6211.566 5964.343 | 34671.631 | 128348.285 | 137669.625 | 195534.25
0.01 16248.661 | 16076.160 | 87336.236 - - -
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Figure 2: CPU time results (seconds) versus CFL number — 65 x 65 points.
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Figure 3: CPU time results (seconds) versus CFL number — 129 x 129 points.

5. Conclusions

In the present work, a study of the Poisson solver subroutine was carried out. Six different Poisson solver
subroutines were studied and compared, namely: point Successive Over-Relaxation — PSOR, line Successive
Over-Relaxation — LSOR, Conjugate Gradient method — CG, Full Approximation Storage (FAS) multigrid
solver with: line SOR, conjugate gradient method and a mixed (line SOR — conjugate gradient). These solvers
were tested with a Poisson equation with analytical solution and with a 2D incompressible flow simulation.
A driven cavity flow was adopted as benchmark. Different CFL numbers were used with each Poisson solver.
The proposed FAS-MIX method, that uses a mixture of basic methods and Krylov subspace methods showed
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the best results. The main conclusion of this work is that multigrid methods, as a convergence acceleration
technique, should be used if one wants to develop a high performance code for solving Poisson equation.
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